Materiaal model
De meest voorkomende materiaaldiagrammen die worden gebruikt bij het modelleren van eindige elementen van constructiestaal zijn het ideale plastisch of elastisch model met een bijbehorend spanning-rek diagram. Het werkelijke spanning-rek diagram wordt berekend uit de materiaaleigenschappen van staal bij een omgevingstemperatuur verkregen in trektests. De werkelijke spanning en rek kunnen als volgt worden verkregen:
\[ \sigma_{true}=\sigma (1 + \epsilon) \]
\[ \epsilon_{true}=\ln (1 + \epsilon) \]
waar σtrue is true stress, εtrue true strain, σ engineering spanning, and ε engineering rek.
De platen in IDEA StatiCa Connection zijn gemodelleerd met elastisch-plastisch materiaal volgens
EN1993-1-5, Par. C.6, (2), tan-1 (E/1000). Het materiaalgedrag is gebaseerd op het von Mises vloeicriterium. Aangenomen wordt dat het elastisch is voordat de ontwerpvloeigrens wordt bereikt, fyd.
Het uiterste grenstoestand criterium voor gebieden die niet vatbaar zijn voor knik, is het bereiken van de grenswaarde van de rek. De waarde van 5% wordt aanbevolen ( EN1993-1-5, App. C, Par. C.8, Note 1).
Materiaal diagram of steel in numerical models
De grenswaarde van plastische rek wordt vaak besproken. In feite heeft de uiteindelijke belasting een lage gevoeligheid voor de grenswaarde van plastische rek wanneer het ideale plastisch model wordt gebruikt. Het wordt gedemonstreerd in het volgende voorbeeld van een ligger-kolomverbinding. Een IPE 180 is verbonden met HEB 300 en belast door een buigend moment. De invloed van de grenswaarde van plastische rek op de weerstand van de balk wordt weergegeven in de volgende afbeelding. De limiet plastische rek verandert van 2% naar 8%, maar de verandering in momentweerstand is minder dan 4%.
Een voorbeeld van voorspelling de UGT van een ligger-kolom verbinding in staal
De invloed van de limiet waarde van plastische rek op het momentweerstand